Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Environ Sci Pollut Res Int ; 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2228945

ABSTRACT

Tokyo Summer Olympics and Paralympics have raised social issues regarding the potential rise in COVID-19 cases in Japan and risks associated with the safe organization of mega sporting events during the pandemic, such as the FIFA World Cup Qatar 2022. This study investigates the Tokyo Summer Olympics as a unique case study to clarify the drivers of infectivity and provide guidelines to host countries for the safe organization of subsequent international sporting events. The result here reveals that Tokyo and Japan did not experience a rise in confirmed cases of COVID-19 due to the hosting of the Summer Olympics. Still, transmission dynamics seems to be mainly driven by the high density of population (about 1.2%, p-value <0.001) like other larger cities in Japan (result confirmed with Mann-Whitney U test, significance at 0.05). Our study provided evidence that hosting mega sporting events during this COVID-19 pandemic is safe if strictly maintained the precautions with non-pharmaceutical (and pharmaceutical) measures of control of infections. The Tokyo Summer Olympics hosting will be exemplary for next international events due to the successful implementation of preventive measures during COVID-19 pandemic crisis.

2.
Sci Total Environ ; 811: 152295, 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1616759

ABSTRACT

COVID-19 pandemic-borne wastes imposed a severe threat to human lives as well as the total environment. Improper handling of these wastes increases the possibility of future transmission. Therefore, immediate actions are required from both local and international authorities to mitigate the amount of waste generation and ensure proper disposal of these wastes, especially for low-income and developing countries where solid waste management is challenging. In this study, an attempt is made to estimate healthcare waste generated during the COVID-19 pandemic in Bangladesh. This study includes infected, ICU, deceased, isolated and quarantined patients as the primary sources of medical waste. Results showed that COVID-19 medical waste from these patients was 658.08 tons in March 2020 and increased to 16,164.74 tons in April 2021. A top portion of these wastes was generated from infected and quarantined patients. Based on survey data, approximate daily usage of face masks and hand gloves is also determined. Probable waste generation from COVID-19 confirmatory tests and vaccination has been simulated. Finally, several guidelines are provided to ensure the country's proper disposal and management of COVID-related wastes.


Subject(s)
COVID-19 , Medical Waste Disposal , Medical Waste , Waste Management , Bangladesh/epidemiology , Delivery of Health Care , Humans , Pandemics , SARS-CoV-2
3.
Mar Pollut Bull ; 168: 112419, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1201510

ABSTRACT

Face masks are playing an essential role in preventing the spread of COVID-19. Face masks such as N95, and surgical masks, contain a considerable portion of non-recyclable plastic material. Marine plastic pollution is likely to increase due to the rapid use and improper dispensing of face masks, but until now, no extensive quantitative estimation exists for coastal regions. Linking behaviour dataset on face mask usage and solid waste management dataset, this study estimates annual face mask utilization and plastic pollution from mismanaged face masks in coastal regions of 46 countries. It is estimated that approximately 0.15 million tons to 0.39 million tons of plastic debris could end up in global oceans within a year. With lower waste management facilities, the number of plastic debris entering the ocean will rise. Significant investments are required from global communities in improving the waste management facilities for better disposal of masks and solid waste.


Subject(s)
COVID-19 , Plastics , Humans , Masks , Oceans and Seas , SARS-CoV-2
4.
Journal of Building Engineering ; : 102346, 2021.
Article in English | ScienceDirect | ID: covidwho-1104095

ABSTRACT

Worldwide, health care sectors are experiencing massive pressure due to the emergence of COVID-19. Many temporary health care centers have been set up to treat infected patients. Increasing energy consumption in these centers is responsible for both rising energy demand and emission. Implementation of renewable energy-based hybrid stone-alone systems can play a vital role in optimizing increasing energy demand. The aim of this analysis is to design a stand-alone system for a temporary health care center located in Saint Martin Island, Bangladesh. This is the first study which highlights the power management of a hospital load. Homer Pro software is used to design the preliminary model, and the proposed configuration comprises PV/Converter/WIND/Battery/Generator. It is observed that the Levelized cost of the proposed system is $0.4688. This system's Levelized cost of energy (LCOE) is 35% lower than the solar home system (SHS). The payback period (PB), rate of investment (ROI), and internal rate of return (IROR) of the optimized system are seven years, 10, and 13%, respectively. The proposed configuration is environmentally sustainable as it generates 27% less CO2 than a diesel-based fuel system.

SELECTION OF CITATIONS
SEARCH DETAIL